Archives de
Étiquette : Électronique

Matrices de LED RGB [Partie 2]

Matrices de LED RGB [Partie 2]

Dans la partie 1, nous avons vu que pour remplir les registres à décalage, il y avait 6 broches de données (R1, G1, B1 et R2, G2, B2) synchronisée par une broche d’horloge… un peu comme un port SPI avec 6 MOSI. D’où l’idée d’utiliser le port SPI hardware de l’Arduino pour envoyer les données. Oui mais… il n’y a qu’un seul MOSI. Mais dans la matrice c’est un registre à décalage… et on peut  mettre plusieurs matrices de LED en série pour les chaîner. Et si on chaînait une matrice avec elle même ? Ça pourrait faire une seule broche de donnée + l’horloge… donc MOSI et SCK.

Bon, c’est pas très net cette histoire. Avec un schéma ça sera plus simple.
À gauche, le schéma simplifié de la partie 1. On envoie en 64 fois en série (pour les 64 LED de large)  R1, G1, B1 et R2, G2, B2 en parallèle.
À droite, le schéma de cette partie. On a chaîné les registres à décalage entre eux. On envoie cette fois 384 données en série sur le premier registre, quand il sera plein il commencera à pousser au suivant et ainsi de suite jusqu’à remplir le dernier registre bleu. Vu que tout est décalé à chaque coup d’horloge, on transmet le dernier pixel bleu B2 en premier pour finir par le premier rouge R1.

 

 

Lire la suite Lire la suite

Station météo : alimentation solaire

Station météo : alimentation solaire

Dernière étape de la station météo sans fil : l’alimentation solaire avec un panneau photovoltaïque. Elle fournira une tension de 5V pour le capteur de particules fines et une tension de 3.3V pour le capteur BME280. Une cellule lithium-ion assurera la continuité de l’alimentation durant la nuit, elle sera automatiquement rechargée dès que la luminosité sera suffisante.

Lire la suite Lire la suite

Station météo : capteur de particules fines (SDS011)

Station météo : capteur de particules fines (SDS011)

Pour poursuivre la conception d’une station météo sans fil, on s’attaque cette fois ci à un capteur de particules fines PM10 et PM2,5. PM signifie Particulate Matter, suivi de la taille des particules en µm, donc en millièmes de millimètre.

A gauche le capteur de température, à droite le capteur de particules.

Ce sont des particules en suspension dans l’atmosphère de taille microscopique : leur diamètre est inférieur à 10µm pour les PM10 et inférieur à  2.5µm pour les PM2,5. Pour référence, un cheveux a un diamètre compris entre 50 et 100µm.

La mesure des particules est assurée par le SDS011 et un module radio nrf24l01+ gère la transmission sans fil. Le cœur est un  atmega328p qui peut être programmé avec arduino.

Lire la suite Lire la suite

Station météo : capteur de température, humidité et pression (BME280)

Station météo : capteur de température, humidité et pression (BME280)

Il s’agit d’une station météo sans fil avec mesure de la température, de l’humidité et de la pression atmosphérique. Elle utilise un module avec un capteur BME280 et un module nrf24l01 + pour la transmission sans fil. Le cœur est un  atmega328p qui peut être programmé avec arduino.

Lire la suite Lire la suite

Alarme d’inondation connectée

Alarme d’inondation connectée

Après avoir surveillé la température et l’ouverture de la porte du frigo, on reste dans la cuisine pour cette fois ci détecter les éventuels problèmes de lave-vaisselle, de mauvais refoulement de lave-linge ou autre joint de raccord de robinetterie fatigué, voir de ballon d’eau chaude tirant sa révérence.

La base du circuit reste identique, un Atmega328p( qui utilise l’horloge interne) comme microcontrôleur, un module radio nrf24l01+ et un petit transducteur piezzo pour l’alerte sonore. La détection de l’eau se fait via l’ADC qui mesure la tension au milieu d’un pont diviseur de tension composé d’une résistance élevée de 2MΩ et d’une « résistance variable » encore plus élevée composé d’air (si tout se passe bien) ou bien plus faible composée d’eau (si la fuite se présente). Dans ce cas, la tension mesurée chute fortement et l’alerte est donnée.

Lire la suite Lire la suite

Téléinfo sans fil avec Arduino – Partie 2 : le capteur

Téléinfo sans fil avec Arduino – Partie 2 : le capteur

Transformation du signal

Comme on a vu dans la partie 1, le signal est composé d’une porteuse à 50kHz présente pour représenter un 0 et absente pour représenter un 1.

Détail de la trame téléinfo

Il va d’abord falloir convertir ce signal en vrai trame série avec les mêmes paramètres de transmission, à savoir 1200 7E1 (1200 baud, 7bits, parité paire, 1 bit de stop).

Trame téléinfo en jaune et trame décodée en bleu
Zoom sur la trame décodée

Lire la suite Lire la suite

Capteur température et luminosité pour réfrigérateur

Capteur température et luminosité pour réfrigérateur

Voici une version améliorée du capteur de température et d’humidité pour être utilisée dans un réfrigérateur pour détecter une baisse anormale de température ou bien si la porte restée ouverte.

Pour la partie température on garde le Htu21d. Pour mesurer la luminosité (et ainsi détecter que la porte est restée ouverte) on va prendre un module avec un phototransistor TEMT6000. Un buzzer piezzo permet d’avertir lorsqu’une alerte est détectée.

Lire la suite Lire la suite

Capteur de température et humidité sans fil (HTU21D)

Capteur de température et humidité sans fil (HTU21D)

On va réaliser un petit capteur d’humidité et température sans fil à base du htu21d qui est un petit capteur numérique qui se connecte sur le bus I²C / TWI d’un microcontrôleur, ou d’un Raspberry Pi. Il est très économe en courant puisqu’il est donné pour maximum 0.14µA en veille et 500µA pendant une mesure. Sa tension d’alimentation est comprise entre 1.5 et 3.6V, on peut aisément l’alimenter avec une pile ou un accumulateur pour en faire un capteur autonome avec un très faible consommation électrique. La partie radio est gérée par un module nrf24l01+.

htu21d

Lire la suite Lire la suite

Faire un circuit imprimé avec peu de matériel pour pas (trop) cher

Faire un circuit imprimé avec peu de matériel pour pas (trop) cher

Petit tuto pour réaliser un circuit imprimé de qualité plus que correct pour un budget low cost et un matériel facilement trouvable dans l’hyper du coin.

Matériel :

  • Lunettes de protection
  • Gants résistants aux acides
  • Vêtement coton ou blouse de chimie
  • Un petit verre doseur ou un bécher qui permet de mesurer facilement 1 mL
  • Transparent jet d’encre ou laser selon l’imprimante utilisée
  • Une insoleuse ou un morceau de verre/plexi et une journée ensoleillée.
  • Un plaque pour circuit imprimé présensibilisée (La marque Bungard est pas mal du tout)
  • Un assortiment de forêt carbure (0.8mm, 0.9mm, 1.0mm…)
  • Une mini perceuse avec une vitesse de rotation élevée (10000-30000 rpm)

Produits chimiques :

  • Lessive de soude à 30% (solution d’hydroxyde de sodium NaOH) ou NaOH solide.
  • Acide chlorhydrique à 23% (solution de chlorure d’hydrogène)
  • Eau oxygénée (peroxyde d’hydrogène) à 12% (droguerie, magasin de bricolage). A 30% ça marche aussi en diluant comme il faut.
  • Acétone (propan-2-one)

Facultatif :

  • Vernis épargne (UV curable solder mask)

Où acheter ?

  • Plaque epoxy : au même endroit que vos composants électronique normalement
  • Produits chimiques : casto-merlin, magasin de bricolage, droguerie, voir hypermarché.
  • Transparent  : papeterie, hyper, fnac-boulanger.
  • Forêts : banggood, ebay, aliexpress (pcb carbide drill)
  • Vernis : banggood, ebay, aliexpress (uv curable solder mask)

Lire la suite Lire la suite